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1. Introduction

A statistical problem that arises in various applications is the
problem of obtaining lower and/or upper confidence bounds for real-
valued functions of several unknown parameters from experimental
data. This problem is encountered in engineering practice, for exam-
ple, in the estimation of the reliability function of a system from the
results of trials on the components of the system. The discussions of
lower and upper confidence bounds are completely parallel, and it is
therefore sufficient to develop this discussion in terms of upper
confidence bounds. '

Proponents of specific procedures for constructing confidence
intervals or regions evaluate desirability of their results in terms of
various optimality criteria which generally include minimizing
“volume” or “expected volume” and minimizing either the pro-
babilities of covering false values or the probabilities of failing to
include the true value of the unknown parameter or parametric
function. '

Upper bound confidence procedures that yield bounds of small
magnitude in a sense yield intervals of small volume. Buehler (1957)
provides uniformly smallest upper bounds for the product of two
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binomial parameters and indicates the generalization of his procedure
to an arbitrary discrete distribution. This optimality property is the
basis of a number of approximation methods for bounding reliability
functions of systems as reported in a survey by Harris and Soms
(1981). In this paper, we lay down a theoretical framework for
Buehler’s optimum confidence bounds procedure.

In Section 2, the notion of ordered sample spaces is introduced
and defined. The monotone confidence sets that are an implicit part
of the Buehler methodology are characterized in Section 3 and
Section 4 describes and discusses Buehler’s confidence procedure and
its extension to continuous sample spaces. A procedure for obtaining
simultaneously Buehler-optimal bounds for a collection of para-
metric functions is also indicated here. Finally, Section S deals with
the issue of existence of Buehler bounds and discusses possible sim-
plifications in the construction of these bounds.

2. Definitions and Notations

The notion of “ordering” the sample space ¥ of a random vector
X=(X,, X,, ..., X,) is essential to the type of confidence bounds
procedure presented here. In this section, this concept and the termi-
nology associated with it are defined.

Suppose each random variable X, is discrete-valued and assumes
a finite number of values. Then the sample space consists of a finite
number of points, say N, and there are N! ways of labeling the
sample points x = (x;, x,,..., x,) using theindexsetI= (1,2, ..., N).
Each one of these N! distinct labelings will be referred to as an order-
ing of the finite sample space X. Given a particular ordering, one can
then refer to the first point, the second point, and in general, the kth
point of the ordered sample space. The notation x *) will be used to
refer to the kth point in the ordering. Clearly, the number of possible
orderings of a finite space increases with N; indeed, the notion of
labeling individual sample points may be extended to sample spaces
that are countably infinite, in which case, an uncountably infinite
number of orderings is possible.

Another sense in which a sample space is said to be ordered is
through a partitioning of the sample space into ordered sets. This can
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be achieved via a real-valued function, say S, that associates partition
elements A4 with values of S in such a way that x; and x , belong to
the same partition element 4 if S(x;) = S(x,). In addition, a prece-
dence relation among partition elements is induced by S, in that, if
x, belongs to partition set A; and x, belongs to partition set 4 j» and
if S(x ;) < S(x,), then A4; is said to precede A; in the ordering of the
partifion sets A4;.

Harris and Soms (1980) refer to the functions S as ordering func-
tions. Note that an ordering obtained via the labeling of individual
points represents a maximal partition of X.

Ordered partitions are particularly appropriate in the countably
infinite and the uncountable cases. In the latter case, the ordering of
individual sample points that is possible with discrete sample spaces
is not possible, and an ordering of the sample space will refer to
an ordered partition entailing specification of an ordering function,
or ‘‘statistic”.

In either case, once an ordering of X is specified, the information
contained in a sample is conveyed by a scalar random variable. For
discrete sample spaces, this random variabJe will be the random index
I(X) with value-space (1, 2,. . ., N), while for continuous sample
spaces, it will be the real-valued statistics S. '

Preliminary to the construction of confidence bounds that are
optimal in the Buehler sense, we will present a procedure for obtain-
ing optimal confidence regions for parametric vectors.

3. Monotone Confidence Regions

3.1 Discrete Distributions

Let X = (X;, X,, . . ., X,) be a vector of random variables
assuming finitely many values. Suppose the distribution function X
belongs to a family of distributions parameterized by 6 = (8 1502, ..
6, ) belonging to the parameter space ©.

For a particular labeling of the sample points, the cumulative
distribution function of the ordered points is given by:

.

Fx®;6) = F(k;9)
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PROB(I(x)< kl§)

= 3 fx9D;0)
i€k

where 7 is the random index generated under 6 by the given labeling,
with I(x) = k iff x is the kth point in the ordered sample space and

f(x;6) = PROB(X=x18)

Consider now the following subsets of the parameter space:

Qk)=(0eb: Fk;0)>a), k=1,2,...,N, (3.1.1)

where 0 < « < 1 is fixed. Since, for fixed 8 F(k; 6 ) is monotone non-
decreasing in k with F(N; 8) = 1, these subsets form a sequence of
nested regions that are nondecreasing to ©;i.e.,

Qyca@)c... cakic...ca ) =6.
In addition, if
w()=a(1)
and
wk)=Qk)-Qk-1), k=2,3,..,N,

then every 6 belongs to exactly one of the disjoint sets w(k). This
follows from the observation that if 6' _does not belong to any
w(k), then F(k; ) < a for all k. In particular, F(V; 'Y< a<1,s0
that F(-;6') cannot be a distribution function.

The above properties afe useful in proving the next two theorems.

Note that, given a labeling of ¥, Q (k) is used to denote Q(/(x) ), with
I(x) the label assigned to x (i.e., 2(x &) y=q(k)).
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Theorem 3.1.1: For any labeling of 'the sample space, the sets
(S2(x): x e X) constitute a family of (1-a) 100% confidence regions
forg. '

Proof: Let the parameter point 8’ belong to w (n+1). The §'is in
Q(n+1) but is not in Q(n). The monotonicity of the regions Q (k)
further implies that 6 ' is in (k) iff k> n+1. Hence,

PROB(8'e Q(X)16') = PROB(®'eQU(X))!8")
= PROB(I(X)=ntl18")
= 1-F(n;8")
> la
where the inequality is implied by the assumption that 8 does not
belong to Q(n) so that F(n;0') < a. Q.E.D.

Theorem 3.1.2. Consider a fixed labeling of X and let (2(x):
x € I) be the monotone confidence regions corresponding to this
[abeling. Suppose (D(x): x e I) is any other family of (1-a) 100%
confidence regions for §. Let D(k) denote the D-region correspond-
ing to the kth point in the given labeling. If D(k-1) C D(k) fpr k=2,
.3, ..., N, with D(NV) =@, then, Q(x) C D(x) forall x.

Proof: Suppose for some k and hence some x, we can find a ¢’
such that 8’ is in Q(k), but not in D(k). Since 6" is not in D(k) and
the regions D(i) are monotone nondecreasingin i, 0' e D(j) iffi > k+1.
Hence,

PROB (6' ¢ D(X)18') = PROB(8'e¢D (I(X))18")
= PROB (I(X)> k+l 16'6")
= 1-F(k;6")
< la

where the strict inequality follows from the assumption that 8’ is
in Q (k), which implies that F(k; 6') > a. This establishes that the
sets (D(x) ) cannot constitute a system of (1-a) 100% confidence re-
gions for 6 . Therefore it must be true that there are no vectors § that
are in Q(k) but not in D(k) and, hence, Q(x)C D(x) for all x. Q.E.D.
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These two theorems establish that, for a given ordering, the con-
fidence regions (Q2(x)) are uniformly smallest among all similarly
ordered nested confidence regions that are nondecreasing to .

The nature of the monotone confidence regions is determined
by the nature of the cumulative distribution function F of the or-
dered sample points for fixed k;i.e., F as a function of 9. This is illus-
trated in the following example.

EXAMPLE 1: Let X ~ binomial (2, p). Then@=[0, 1] and X =
(0, 1, 2). In this simple case, there are six possible ways of labeling
the sample points. Table 2.2.1 lists these orderings and their corres-
ponding 95% monotone confidence regions. Order (I) is the “natural”
labeling of the sample space, for which the distribution function is
simply the binomial distribution, and

Qk)=(p: PROB(X<klp)>a) fork= 0,1,2%**

Table 1. Optimal 95% monotone confidence regions for p

Order  x(1) x(2) x(3) Q1) 2)
1 0 1 2 [0.0,.78] [0.0,.975]
| 0 2 1 [0.0,.78] [0.0,1.0]
1 1 0 2 [.026,.974] [0.0,.975]
v 1 2 0 [.026, .974] [.025,1.0]
\ 2 0 1 [.225,1.0] [.025, 1.0]
V1 2 1 .0 [.225,1.0] [.025,1.0]

We now proceed to extend the type of confidence region pro-
cedure developed here to include parameters of continuous distri-
butions.

3.2. Continuous distributions

Let us now consider the case where X is a vector of “continuous”
random variables (i.e., random variables with distributions absolutely
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continuous with respect to Lebesgue measure), parameterized by 8 ¢ ©.
Suppose an ordered partition of the sample space is obtained via the
ordering function (statistic) S(X), with distribution function given
by

F(s;8) = PROB (S(X)<s16)

where s belongs to the range space, S(X), of the function S.

A system of monotone confidence regions for 6 based on § may
be obtained by a construction similar to that corresponding to Equa-
tion 3.1.1. as follows: for a sample point x with S(x) = s, a subset of
the parameter space is determined by:

QSx)) = Q(s) = (0e0: F(5;0) > a).
Clearly, these sets are monotone increasing; i.e., 2(s) C Q(s') when-

ever s < §'. To establish that these regions are 1ndeed (1-a) 100%
confidence regions for § , we not that:

PROB (6 € 2(S(X) ) | 6)

PROB (F(S(X),8) >a l8)
PROB (S(X)> s(a,8)106)
> l-a

where s(a, 8) is any o% point of S(X) under 6, or, more precisely, is
the supremum of all s such that F(s;9) <a.

We now present the continuous analogue of Theorem 3.1.2.,
which can be proved in a similar fashion.

Theorem 3.2.1: Suppose (D(s)) is any other family of (l-«)
100% confidence regions for # based on the ordering funtion S. If
D(s)C D(s") whenever s < s, then Q(s)C D(s) for all s e S(X).

We end this subsection with an example.

EXAMPLE 2: Let X, (k=1,2...., n)beiid. N(u, 02). Consider
two ordering functions: S; (x) =x and S, (x) =t =+/n x/6 where X =
(1/n)Zx; and. 62 = (1/(n-1) )2 (x;x)2. Then, (with z designating the
normal distribution and ¢ designating the non-central r-distribu-

v? 8
tion with v degrees of freedom and noncentrality parameter §);
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QUF) = .((,02): PROB(X <X 1(u,02)) > a)
= ((,02) ugX +2q.0/V n)
and
Q@) = ((u,02): PROB(T<t!|(u,02)) >a)

(W, 02): tyq, Vnplo) > ).***
4. Optimal Confidence Bounds

4.1. Buehler bounds for discrete distributions

In this section, we assume that the vector of observations X is
defined over a finite sample space; hence, an ordering of the sample
space refers to a labeling of the sample points.

For a fixed labeling of the sample space, let us define a function
of the sample points as follows:

l

b(xk) )y = b(k) sup (H@): F(k;0) > a) 4.1.1)
sup H(8)

0e2(k)

where € (k) is the monotone region defined in Equation 3.1.1 above.
In the following theorems, certain properties of the function b(:)
given by Buehler (1957) are established. Note that the function b
assigns a value to the sample point x via its position in the ordering.
In what follows, we will denote b(x) by b(k) iff x = x ),

Theorem 4.1.1: b(k) < b(k+1) for k=1,2. .. N-1.

Proof: Consider the following sets of values of the function H:

A(k) = (H(@): 6eQ (k)), k=1,2.. ., N

Now, note that Q(k)C Q(k+1) implies that A(k)C A(k+1) and that
b(k) is the supremum of A(k). The conclusion follows from the de-
finition of supremum. Q.E.D.
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The next theorem establishes that the function b generates a
system of (1-a) 100% upper confidence bounds for H(8).

Theorem 4.1.2: For any labeling of the sample points, PROB
(H@) < b(X) 18) > 1-aforall .

Proof: Let §' belong to w (n+1), where w is as defined in sub-
section 3.1. For such ¢,

PROB (H(®') < b(X)16') = PROB(H(@®') < b(I(X)) 197)
> PROB( sup H(B';< bI(X))e"
6 €8 (nt+l
= PROB (b(n+l) < b(I(X))16")

By the monotone nondecreasing property of b estabhshed in Theo-
rem 4.1.1. we may write:

PROB (b(nt1)< b((X)) 16")

PROB (I(X)> n+1 18')
= 1-F(n;8")
> l-a.

The mequahty follows from 6’ ¢ Q(n), since 0 ¢ Q(n) implies that
F(n;0')<a. QE.D.

We now statt and prove an optimal property of the system of
upper confidence bounds generated by the function .

Theorem 4.1.3: Consider a fixed labeling of the sample points.
Suppose d(X) generates any other system of (l-a«) 100% upper
confidence bounds for H(6). Denote d(x®) ) by d(k). If d(k) <
d(k+1) for k=1, 2 ..., N-1, then b(x) < d(x) forall x € X.

Proof: Suppose that, for some k£ and hence some x, d(k) <
b(k). Then, since b(k) is the supremum of H on Q(k), it follows, that
for some 0’ in Q(k), d(k) < H(8'). Hence, by the monotone increasing
property of the functiond, d(i) > H(6') iffi > k+1, or:

PROB (H(9")< d(X)16")

PROB (H(6")> dU(X) ) 16)
< PROB (I(X)> k+1 19")
I-F (k:0")

<l
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with the strong inequality implied by the assumption that 6’ belongs
to Q(k). Therefore, d(x) cannot be a (1-«) 100% upper confidence
procedure for H(8), which is a contradiction. So it must be true that
d(x)> H(9) for all 8 € 2(x); hence, b(x) < d(x) for all x . Q.E.D.

The bounds provided by the function b(-) will referred to as
upper Buehler bounds. Theorem 4.1.3 establishes that among all
similarly-ordered upper confidence bounds for H(8), the upper
Buehler bounds constitute a family of uniformly smallest ones.

Clearly, the same methodology extends to obtaining a system of
uniformly largest lower confidence bounds for H(6) via the function:

a(x®)=q(k) = inf(H@®): Fk;0)>a)

= inf H(6).
0eQ2 (k)

These bounds will be referred to as lower Buehler bounds. The fol-
lowing theorem provides a characterization of these lower bounds
that is analogous to that established for the upper bounds in
Theorems 4.1.1—4.1.3.

Theorem 4.k4: For only labeling of the sample space, the
function a(-) satisfies the following properties:

Q)  ak)yzak+), k=1,2,... N

(ii) PROB(a(X)< H(9) Io) 1« forall g ¢ G)

(iii)  If d(X) is any other system of (l-«) 100% lower confi-
dence bounds for H(6) for which d(k) = d(k+1) (where d(x®) ) =
d(k) ), then d(x) < a(x) for all x. '

The proof of this theorem may be argued along the same lines as
the proofs of Theorems 4.1.1 through 4.1.3 and will not be provided
here. We provide the following simple example which illustrates the
basic concepts presented so for in this section.

EXAMPLE 3: Let X ~ binomial (2, p). Then@=1{0,1] and X =
(0, 1, 2). Table 1 exhibits the 95% monotone confidence regions for
the six possible orderings of I. Consider the two parametric func-
tions: H, (p) = p and H,(p)=(1-p). In Table 2 the 95% upper Buehler
bounds for these parametric functions under each of the six possible
labelings of X are presented. Note that some orderings may be
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deemed to provide more reasonable upper bounds than others, which
indicates that in general, some consideration must be given to the
way one labels the sample points.

Table 2. 95% upper Buehler bounds for p and 1-p

Order  x(1) x(?)  x(3) by(1) bi(2) bo(1)  by(2)

I 0 1 2 0.780 0975 . 1.000 - 1.000,
I 0 2 1 0.780 1.000 1.000 1.000
111 1 0 2 0.974 0.975 0.974 1.000
v 1 2 0 0.974 1.000 0974 0975
A" 2 0 1 1.000 1.000 .780 975
VI 2 1 0 1.000 1.600 975 1.000

.4.2 Buehler bounds of continuous distributions

Let X be a vector of continuous random variables and assume
that the continuous sample space is ordered according to the order-
ing function or statistic S(X). Then, the continuous analogue of
Equation 4.1.1 is given by:

b(S(x) )= b(s) sup (H(®): F(s;8)>a)

sup H(6)
6ef2(s) .

where S(x) = s, F(s;6) is the distribution function of S, and Q(s) is

the monotone (1-«) 100% confidence region ford based on S. Cleary,
the function b provides the upper Buehler bound procedure for a
function of the parameters of a continuous distribution. The follow-
ing theorem states the continuous analogues of the properties ascribed
to upper Buehler bounds in the discrete case. Since the assertions
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that we make in this theorem can be established by arguments similar
to those employed in the discrete case, a formal proof will not be
provided.

Theorem 4.2.1: Suppose an ordered partition of the sample
space of a continuous random vector X is provided by the statistic
S. Then, .

(a) b(s) < b(s") whenevers < s'.

(b)Y PROB (H(0)<S< b(S(X))108)> 1l forallg ¢ ©.

(c) Suppose{ d(s): s e S(¥)}is any other family of (1-«) 100%
upper confidence bounds for H(f) based on S. If d(s) < d(s") when-
ever s < s', then b(s) < d(s) for alf s e S(X).

Let us now consider the following example:

EXAMPLE 4: (Sample Inspection by Variables) Suppose a sam-
ple of size n is drawn from a lot of some manufactured product for
the purpose of deciding whether the lot is of acceptable quality.
Assume that the quality of an item is characterized by a variable
Y and an item is considered satisfactory if Y exceeds a given constant,
say U. The probability of a defective or of an unsatisfactory item is

then given by: p = @ (—ggi). Suppose we assume that the measure-

ments Y, Y,, ..., Y, constitute a sample from N(u, 02) and an
upper Buehler bound for p is to be constructed based on this sample.
Since

p=¢% (%“—)

where &(x) = fx(l/\/ 2r) exp (-%2t? )dt, this would be equivalent to

bounding the parametric function H(u, 02) = (U-u)/a. Consider the
ordering functions S,(y) = ¥ and S,(y) = Vn(U-y)/é = t. With the
monotone confidence regions (Q2(y) and (Q(¢) ) as given in example
2, the upper Buehler bounds for H corresponding to S; and §, are,
respectively:

b0 =a | vy
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and

by(t)=g®)/Vn
where

g()=sup(8: PROB(ty . s <t)>a)

*or g(t) = 5 iff ¢ is the (1-a) % point of the t,_;, & distribution. Note
again that some orderings provide more reasonable bounds than others.

4.3. Optimal Simultaneous Confidence Bounds

If a particular parametric function H is of interest, then we may
construct optimal (1-) 100% upper confidence bounds for H by
computing upper Buehler bounds:

b(x®) Y= b(k)=sup( H(B): 0eQ(x®))) (4.3.1)

Indeed, such bounds may be computed for any desired number
of parametric functions by computing indiviudal supremums over a
common region of optimization and will clearly be simultaneous
(1-a) 100% confidence bounds.

Such simultaneous bounds are optimal not only in the sense of
being based on the optimal regions Q(-) but also in the sense of
being uniformly smallest-possible among all similarly ordered bounds.
We may therefore conclude that optimal Buehler bounds possess
this simultaneity property: they may be computed for as many dif-
ferent parametric functions as we might wish, and will be not only
optimal in the Buehler sense, but also simultaneously (1-«) 100%
bounds. It may be noted that this assertion rests only on the fact
that the monotone regions are (1-a) 100% confidence regions, and
not on their “inclusion” optimality as regions. The claim to optimality
is based, rather, on our noticing that bounds for individual H's com-
puted on the basis of Equations 2.4.1 or 2.4.2 happen to have the
form of Buehler’'s bounds that claim ‘“‘magnitude” optimality as
scalars.
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4.4. The Question of Existence

In the computation of Buehler bounds for a function H(8) of the
parameters of the distribution function of a discrete random vector
X, we seek the supremum or infimum of H over the region Q(x) =
Q(x® )= (0e0: F(k;0) > o) where 1-a is the specified confidence
level. Clearly, if this set is empty, the Buehler bound for the sample
point x is undefined. Since the regions (2) are order-dependent and
a-dependent, this indicates that Buehler bounds may not exist for
certain orderings of the sample space of X and for certain a values.

Let flx; 8) denote the likelihood function of x. If Ax@): 8" is
greater than « for some 8' in ®, then obviously, F(x®; ') must be
greater than « for all i > 1. This establishes the following theorem:

Theorem 4.4.1: Let ( x(U, x@) . xW)) denote a particular
ordering of the sample space of a discrete random vector X. Then for
this ordering, (1-a) 100% upper and lower Buehler bounds for a
parametric function H are defined for all x iff Ax(1);8) > a for some
0.

This theorem implies that orderings for which (1) is empty
need not be considered. In addition, it implies that if f(x; 8) <o for
all xex and 6 €®, then (}-a«) 100% upper and lower Buehler bounds
cannot be constructed for all x.

5. Some Simplifications in the Construction of Buehler Bounds

In this section, the following definitions and notations will be
useful: for a specified ordering of the sample space let

h(k) = sup H(8), Q) = (0e0: F(k;8) >a)
0 eQ(k)

h'(k) = sup H®), Q'k) = (0e0: F(k;0) = a)
6eQ' (k)

h*(k) = sup H(®9), Q*k) = (0e®:F(k:8)>a).
0eQL*(k)

Note that h(k) is simply the Buehler upper bound b(k) for H(#). The
following properties follow directly from the definitions given above.
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Lemma 5. 1 h*(k) = max ( h(k), h'(k) ). ,

Proof: By definition, 2*(k) = Q'(k) U Q(k) and the conclusion
immediately follows from this relationship. Q.E.D.

Lemma 5.2 (Q*(k): k=1, 2, ..., N)is a family of (1-a) 100%
confidence regions for 4.

Proof: This follows from the observation that for every k, Q*(k)>
Q (k). Q.E.D.

Lemma 5.2 implies that if h(k)=h"(k), then upper Buehler bounds
for H(8) can be equivalently computed as 4(k), A'(k), or h*(k).

5.1. Simplifications in the scalar case

Let us initially consider the case where both X and 6 are scalar
quantities and let F(k; 8) with 6 ¢ ©® denote the distribution function
of X under a specified labeling of the sample space, under which
Buehler bounds are defined for all x € X. For a fixed k, let

6(k)=sup(8: F(k;0)>a)
and

6'(k)=sup (6: F(k;0)=a).

The following theorem is easily established:

Theorem 5.1.1: Let F(k; ) denote the distribution function of
discrete random variable X under a specified ordering of the sample
space. Suppose k is fixed.

(a) If F is decreasing in # and F(k;8) = «, for some 6, then 6(k)
< 6'(k). .

(b) If Fis decreasing in 8 and F(k;68) =« forsome § andif Hisa
bounded, nondecreasing function on Q *(k), then A(k) < h'(k).

(c) If F is decreasing in 6 and F(k; 6) = o for some 6 and if H is
bounded, nondecreasing and continuous on Q*(k), then a(k) = h'(k).

Part (c) of the above theorem provides sufficient conditions
under which the upper Buehler bounds may be computed over the
region ' (k) in place of the region 6 (k).
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5.2. The nonscalar case
Consider the general situation where X = (X, . . ., X};) with
X; assuming a finite set of values and 6 = (6, . . ., §,) with 9; de-

fined on an interval. Suppose for a given ordering of sample points,
the cumulative distribution function at x ) satisfies the following
properties:

PROPERTY 1. F(k;#8) is decreasing in b; for some j

PROPERTY 2. F(k;0) = a for some 4.

The following theorem indicates when the upper Buehler bound is
attained at a boundary point of the region Q (k).

Theorem 5.2.1: Consider, for fixed k, a cumulative likelihood
function F(k; 6) which satisfies properties 1 and 2.

(a) Suppose H is bounded on Q*(k) and H(6) is nondecreasing
in 8; whenever F(k; 6) is decreasing in §;. Then h(k) = h'(k).

(b) Suppose H is bounded on Q*(k), H and F(k; ) are conti-
nuous in a 8; for which H is nondecreasing in 6 j whenever F(k; §) is
decreasing in 6 ;- Then h(k) = h' (k).

In lieu of a formal proof of the theorem, let us consider the fol-
lowing important example:

EXAMPLE 5. Let X, (k=1, 2, 3) be independent binomial
(ng, py) random variables. Then f{x; p) = fix,, x,, x3; p) is given by:

a (" =1
=1\ % /D1 X;4qi ni—X; 4i = 1Pi>

and the parameter space ® = ((p,, py, P3): 0< p, < 1,k=1,2,3)
]

, 3 .
is a closed and bounded set. The N= 11 (n;+1) sample points can be
k=1

strictly ordered, and correspondingly distinctly labeled by (x(1),
x@, ..., x®™)), in N! different ways, and, for any one of these label
ings, the cumulative distribution function of .he ordered points x(
can be expressed as:
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=

e
3 (7 KO R ()
Flk;p) =2 ( xw) pXiT g
i<k !

For a fixed valued of k (k=1, 2, . . ., N), the function F is clearly a
polynomial in p,, p,, and p; and hence is continuous on the para-
meter space.

Suppose the sample points are distinctly labeled in such a way
that the following two conditions are met:

Condition 1. x) = (0, 0, 0) and x™) = (n, n,, n3).

Condition 2. (Monotomc1ty Property) If x; = (xy3, x5, X13) and
Xy =(xq;, X939, X,3) are any two points for which x; < x,; forall j,
then x| precedes x, in the ordered sample space.

In the sense of Harris and Soms (1980), such an-ordering is a
“monotone ordering of a finest-possible partition” of the sample
space. Obviously, these two conditions do not determine a unique
distinct labeling for 2.

We now consider some further propertles of the function F(k; p).

Proposition 1: Suppose F is the cumulative distribution function
of a distinct labeling, (x(1), x2) ... x@®) ), of the N possible sample
points, that satisfies condltlons 1 and 2. Then for all £k # N,
3 F(k; p)/ap; < O for all . _

Proof: Wlthout loss of generality, we will show that the conclu-
sion holds for j=3. For fixed k, let us define the following quantities:

x; = maxx,®
j<k |
x," = max (x,0: (r, x,@,x39)) ' (5.2.1)
jsk
x5 = max (x,0: (r, 5, x, D
3 ma (x50 ( 37))

and the sets

A, ) =(x: X; =1, Xy =5, X3<x3" %)

where =0, 1, . . ., x] and s=0, 1, . .., x,". Note that the sets A(#, 5)
are disjoint and every sample point x?) for which j < k is included in
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the union vy A(r, 5). Therefore, for any p and k£ # N, we may write:

F(k; p) PROB (X e WU A(r,5) | p)
rs

T Z PROB( X =r, X5=5, X3 <x3"%1p) (5.2.2)
r s

T 2 PROB(X,=r|p;) X PROB (X,=s!p; )
x PROB( X3< x3"% | p3)

Let g(p3) = PROB( X5 < x3" Slpy ). Then, 3g(p;)/ap; < O for all
x3" . It follows from (5.2.2) that the partial derivative of F with res-
pect to p; is negative. Q.E.D.

This proposition implies that for fixed values of k, p; and p,,
F(k; (py, P5, p3)) is a decreasing function of ps. .

Proposition 2: Suppose F is the cumulative distribution function
of a distinct labeling ( x(1), x) ..., x®) ) of the N possible sample
points that satisfies conditions 1 and 2. The for any fixed value of
k + N, F(k; p) maps the parameter space onto {0, 1].

Proof: Utilizing the quantities defined in expressions (5.2.1) and
5.2.2, the function F(k; p), for fixed k, can be written as:

F(k;p) =2 Z Z PROB (X,=rlp,)xPROB (X,=5lp, ) xPROB (X;3=
tlpy) where 20,1, . . ., x" 5. Since X, is binomially distributed,

(5.2.3)

PROB( X, =x10) = 0 @fx% 0.
1 ifx =0,

Hence, for p = (0, 0, p3), with p; € [0, 1] the product of probabili-
ties in Equation 5.2.3 is nonzero if r=s=0, in which case conditions 1
and 2 imply:

F (k;(0,0,p3)) = PROB (X3 <x3%9 I p,). (5.2.4)
Now F(k; p) is a polynomial in p; and, hence, is continuous in p;,

Hence, by Equation 5.2.4 and the monotone property of a binomial
distribution function F assumes all values on [0, 1}. Q.E.D.
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This proposition establishes that the set
Q' (k)= @:F(k;p) = @)

is nonempty for all k # Nand forall0 < a < 1.

Proposition 3: Suppose H is nondecreasing in each p;. Then, for
k# N, h(k)< K (k).

Proof: Without loss of generality, let us assume that H is non-
decreasing in p;. From Proposition 2, we know that, for fixed values
of k, p;, and p,, F(k; (p;, p,, p3)) is strictly decreasing in p,. This
property and the continuity property of F(k; p) in p; imply that for
every p' = (p;’, p,’,p3") in & (k), there exists a §-neighborhood of p’
which includes points in Q' (k). In particular, if F(k; (pi', p,', v3')
> a, then F(k; (p,', p,', p3' +8)) =a for some § > 0. Since H is
nondecreasing in p4, it follows that H(p,', p,’, p;' +8) > H(p,',
p,', p;") and hence that A(k) < #'(k). Q.E.D.

Proposition 4: Suppose H is bounded and continuous on the
parameter space and is nondecreasing in each p, . Then, A(k) = h'(k)
for k=N.

Proof: By the continuity property of F(k; p) on ©, Q*(k) is
closed and bounded for all £ # N, hence, the continuity of H(p)
implies that h*(k) is achieved on Q*(k). Let h*(k) = H(p*) and
suppose that A(k) < A'(k). By Lemma 5.1, this implies that A'(k)
= H(p*) and p* ¢ Q' (k). Hence for some n > 0,

W' (k) — h(k) = Hp*) — h(k) =n

Since H is continuous, there exists a neighborhood of p* such that
for all p in this neighborhood, H(p*) — n/2 < H(p) < H(p*). In parti-
cular, since F(k; p) is also continuous, there exists p° in this neigh-
borhood such that p° e (k). But,

h(k)= H@p*) —n < Hp*) —n/2 < Hp®)

implies that A(k) cannot be the supremum of H on (k). Hence,
h(k) = h'(k). Q.E.D.

Note that the relationships established in the above propositions
hold only for k#N. To see why this is so, observe that F(N; p) = 1
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for all p. Hence, for a € (0, 1), Q'(N) is empty. In this case, h*¥(N) =
h(N) = H(1, 1, 1) for nondecreasing H. Also note that if the function
H is nonincreasing, then for the given labeling of sample points, we
have the trivial result that #*(k) = h(k) = H(O, 0, 0) for all k. Clearly,
the ordering specified is undesirable for nonincreasing H.

6. Summary and Conclusions

Sample space-order-dependent confidence bounds due to Buehler
(1957) are shown to be uniformly shortest within the class of similar-
ly-ordered bounds. The monotone confidence regions intrinsic to the
Buehler methodology also exhibit an analogous optimality property
for regions. Furthermore, they provide for the construction of simul-
taneous confidence bounds for an arbitrary collection of parametric
functions which are also optimal in the Buehler sense.

We may observe that some orderings of the sample space produce
more reasonable bounds than others and it is of interest to character-
ize “optimal” orderings for classes of parametric functions.
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